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Abstract—Algebraic multigrid (AMG) is a popular solver for
large-scale scientific computing and an essential component of
many simulation codes. AMG has shown to be extremely efficient
on distributed-memory architectures. However, when executed
on modern multicore architectures, we face new challenges that
can significantly deteriorate AMG’s performance. We examine
its performance and scalability on three disparate multicore
architectures: a cluster with four AMD Opteron Quad-core
processors per node (Hera), a Cray XT5 with two AMD Opteron
Hex-core processors per node (Jaguar), and an IBM BlueGene/P
system with a single Quad-core processor (Intrepid). We discuss
our experiences on these platforms and present results using
both an MPI-only and a hybrid MPI/OpenMP model. We also
discuss a set of techniques that helped to overcome the associated
problems, including thread and process pinning and correct
memory associations.

I. INTRODUCTION

Sparse iterative linear solvers are a critical part of many
simulation codes and often account for a significant fraction
of their total run times. Therefore, the performance and
scalability of linear solvers on modern multicore machines
is of great importance for enabling large-scale simulations
on these new high-performance architectures. Furthermore, of
particular concern for multicore architectures is that for many
applications, as the number of cores per node increases, the
linear solver time becomes an increasingly larger portion of the
total application time [1]. In other words, under strong scaling
the linear solver scales more poorly than the remainder of the
application code.

The AMG solver in hypre [2], called BoomerAMG, has
effective coarse-grain parallelism and minimal inter-processor
communication, and, therefore, demonstrates good weak scal-
ability on distributed memory machines (as shown for weak
scaling on BlueGene/L using 125,000 processors [3]). How-
ever, the emergence of multicore architectures in high-
performance computing has forced a re-examination of the
hypre library and the BoomerAMG code. In particular, our
preliminary study in [4] on a smaller problem on a single
machine at a limited scale indicates that BoomerAMG’s
performance can be harmed by the new node architectures
due to multiple cores and sockets per node, different levels
of cache sharing, multiple memory controllers, non-uniform
memory access times, and reduced bandwidth. With the MPI-
only model expected to be increasingly insufficient as the
number of cores per node increases, we have turned our focus

to a hybrid programming model for our AMG code, in which
a subset of or all cores on a node operate through a shared
memory programming model like OpenMP. In practice, few
high-performance linear solver libraries have implemented a
hybrid MPI/OpenMP approach, and for AMG in particular,
obtaining effective multicore performance has not been suffi-
ciently addressed.

In this paper we present a performance study of Boomer-
AMG on three radically different multicore architectures: a
cluster with four AMD Opteron Quad-core processors per
node (Hera), a Cray XT5 with two AMD Opteron Hex-
core processors (Jaguar), and an IBM BlueGene/P system
with a single Quad-core processor (Intrepid). We discuss the
performance of BoomerAMG on each architecture (Section V)
and detail the modifications that were necessary to improve
performance (i.e., the “lessons learned”, Section VI). In par-
ticular, we make the following contributions:
• The first comprehensive study of the performance of

AMG on the three leading classes of HPC platforms;
• An evaluation of the threading performance of AMG

using a hybrid OpenMP/MPI programming model;
• Optimization techniques, including a multi-core support

library, that significantly improves both performance and
scalability of AMG;

• A set of lessons learned from our experience of running a
hybrid OpenMP/MPI application that applies well beyond
the AMG application.

The remainder of this paper is organized as follows: in
Section II we present an overview of the AMG solver and
its implementation. In Section III we introduce the two test
problems we use for our study, followed by the three eval-
uation platforms in Section IV. In Section V we provide a
detailed discussion of the performance of AMG on the three
platforms, and in Section VI we discuss lessons learned as
well as optimization steps. In Section VII we conclude with a
few final remarks.

II. ALGEBRAIC MULTIGRID (AMG)
Algebraic multigrid (AMG) methods [5], [6], [7] are pop-

ular in scientific computing due to their robustness when
solving large unstructured sparse linear systems of equations.
In particular, hypre’s BoomerAMG plays a critical role in a
number of diverse simulation codes. For example, at Lawrence
Livermore National Laboratory (LLNL), BoomerAMG is used



in simulations of elastic and plastic deformations of explosive
materials and in structural dynamics codes. Its scalability
has enabled the simulation of problem resolutions that were
previously unattainable. Elsewhere, BoomerAMG has been
critical in the large-scale simulation of accidental fires and
explosions, the modeling of fluid pressure in the eye, the
speed-up of simulations for Maxillo-facial surgeries to correct
deformations [8], sedimentary basin simulations [9], and the
simulation of magnetohydrodynamics (MHD) formulations of
fusion plasmas (e.g., the M3D code from the Princeton Plasma
Physics Laboratory).

In this section, we first give a brief overview of multigrid
methods, and AMG in particular, and then describe our im-
plementation.

A. Algorithm overview

Multigrid is an iterative method, and, as such, a multigrid
solver starts with an initial guess at the solution and repeatedly
generates a new or improved guess until that guess is close in
some sense to the true solution. Multigrid methods generate
improved guesses by utilizing a sequence of smaller grids and
relatively inexpensive smoothers. In particular, at each grid
level, the smoother is applied to reduce the high-frequency
error, then the improved guess is transferred to a smaller, or
coarser, grid. The smoother is applied again on the coarser
level, and the process continues until the coarsest level is
reached where a very small linear system is solved. The goal
is to have significantly eliminated error once the coarsest level
has been reached. The improved guess is then transferred back
up—interpolated—to the finest grid, resulting in a new guess
on that original grid. This process is further illustrated in
Figure 1. Effective interplay between the smoothers and the
coarse-grid correction process is critical for good convergence.

The advantage of a multilevel solver is two-fold. By oper-
ating on a sequence of coarser grids, much of the computation
takes place on smaller problems and is, therefore, compu-
tationally cheaper. Second, and perhaps most importantly,
if the multilevel solver is designed well, the computational
cost will only depend linearly on the problem size. In other
words, a sparse linear system with N unknowns is solved
with O(N ) computations. This translates into a scalable solver
algorithm, and, for this reason, multilevel methods are often
called optimal. In contrast, many common iterative solvers
(e.g., Conjugate Gradient) have the non-optimal property that
the number of iterations required to converge to the solution
increases with increasing problem size. An algorithmically
scalable solution is particularly attractive for parallel com-
puting because distributing the computation across a parallel
machine enables the solution of increasing larger systems of
equations. While multigrid methods can be used as standalone
solvers, they are more frequently used in combination with a
simpler iterative solver (e.g., Conjugate Gradient or GMRES),
in which case they are referred to as preconditioners.

AMG is a particular multigrid method with the distinguish-
ing feature that no problem geometry is needed; the “grid” is
simply a set of variables. This flexibility is useful for situations

Fig. 1: Illustration of one multigrid cycle.

when the grid is not known explicitly or is unstructured. As a
result, coarsening and interpolation processes are determined
entirely based on the entries of the matrix, and AMG is a
fairly complex algorithm.

AMG has two separate phases, the setup and the solve
phase. In the setup phase, the coarse grids, interpolation
operators, and coarse-grid operators must all be determined for
each of the coarse-grid levels. AMG coarsening is non-trivial,
particularly in parallel where care must be taken at proces-
sor boundaries (e.g., see [10], [11]). Coarsening algorithms
typically determine the relative strength of the connections
between the unknowns based on the size of matrix entries and
often employ an independent set algorithm. Once the coarse
grid is chosen for a particular level, the interpolation operator
is determined. Forming interpolation operators in parallel is
also rather complex, particularly for the long-range variety that
are required to keep memory requirements reasonable on large
numbers of processors (e.g., see [12]). Finally the coarse grid
operators (coarse-grid representations of the fine-grid matrix)
must be determined in the setup phase. These are formed via
a triple matrix product. While computation time for the AMG
setup phase is problem dependent, it is certainly non-negligible
and may have a significant effect on the total run time. In fact,
if a problem converges rapidly, the setup time may even exceed
the solve time.

The AMG solve phase performs the multilevel iterations
(often referred to as cycles). The primary components of
the solve phase are applying smoother, which is similar to
a matrix-vector multiply (MatVec), and restricting and inter-
polating the error (both MatVecs). AMG is commonly used
as a preconditioner for Conjugate Gradient or GMRES, and
in that case, the MatVec time dominates the solve phase run-
time (roughly 60%), followed by the smoother (roughly 30%).
Many reasonable algorithmic choices may be made for each
AMG component (e.g., coarsening, interpolation, and smooth-
ing), and the choice affects the convergence rate. For example,
some coarsening algorithms coarsen “aggressively” [7], which
results in lower memory usage but often a higher number of
iterations. The total solve time is, of coarse, directly related
to the number of iterations required for convergence.

Finally, we note that a consequence of AMG forming the
coarse grid operators via the triple matrix product (as opposed
to via a geometric coarsening in geometric multigrid) is that
the size of the “stencil” grows on the coarser levels. For



example, while on the fine grid a particular variable may
only be connected to six neighbors, the same variable on a
coarse grid could easily have 40 neighbors. Thus, in contrast
to geometric multigrid, the AMG coarse grid matrices are less
sparse and require more communication than the fine grid
matrices [4].

B. Implementation

In this paper, we use a slightly modified version of the
AMG code included in the hypre software library [13]. AMG
provides a wide range of input parameters, which can be used
to fine-tune the application. Based on our experience working
with large scale applications at LLNL and beyond, we chose
the following typical options to generate the results in this pa-
per. For coarsening, we use parallel maximal independent set
(PMIS) coarsening [14] and employ aggressive coarsening on
the first level to achieve low complexities and improved scala-
bility. For interpolation we use multipass interpolation [7], [15]
on the first coarse level and extended+i(4) interpolation [12]
on the remaining levels. The smoother is a hybrid symmetric
Gauss-Seidel (SGS) smoother, which performs sequential SGS
on all points local to each MPI task or OpenMP thread and
delays updates across cores. Since AMG is most commonly
used as a preconditioner for both symmetric and nonsymmetric
problems, our experiments use AMG as a preconditioner for
GMRES(10).

Some parallel aspects of the AMG algorithm are dependent
on the number of tasks and the domain partitioning among
MPI tasks and OpenMP threads. The parallel coarsening
algorithm and hybrid Gauss-Seidel parallel smoother are two
examples of such components. Therefore, one cannot expect
the number of iterations to necessarily be equivalent when, for
example, comparing an experimental setup with 16 threads per
node to one with 16 tasks per node. For this reason, we use
average cycle times (instead of the total solve time) where
appropriate to ensure a fair comparison.

While we tested both MPI and OpenMP in the early stages
of BoomerAMG’s development, we later on focused on MPI
due to disappointing performance of OpenMP at that time. We
use a parallel matrix data structure that was mainly developed
with MPI in mind. Matrices are assumed to be distributed
across p processors in contiguous blocks of rows. On each
processor, the matrix block is split into two parts, one of
which contains the coefficients that are local to the processor.
The second part, which is generally much smaller than the
local part, contains the coefficients whose column indices point
to rows stored on other processors. Each part is stored in
compressed sparse row (CSR) format. The data structure also
contains a mapping that maps the local indices of the off-
processor part to global matrix indices as well as a information
needed for communication. A complete description of the
parallel matrix structure used can be found in [16]. The AMG
algorithm requires various matrices besides the original matrix,
such as the interpolation operator and the coarse grid operator.
While the generation of the local parts of these operators
generally can be performed as in the serial case, the generation

of the off-processor part as well as the communication package
and mapping of the original matrix is fairly complex. It
depends on the number of ghostlayer points, i.e., those points
that are immediate neighbors to a point i, but are located on
another processor. Therefore, a large number of ghostlayer
points, which can be caused by a non-optimal partitioning, will
not only affect communication, but also increase computation.
On the other hand, replacing pk MPI tasks by p MPI tasks with
k OpenMP threads each that do not require ghostlayer points
could lead to improved performance. We evaluate and discuss
the number of ghostlayer points for the problems considered
here in Section VI-A.

Our recent efforts with the AMG code have been aimed at
increasing the use of OpenMP in the code. The solve phase,
composed primarily of the MatVec and Smoother kernels, can
be threaded in a straightforward manner (contiguous subsets
of a processor’s rows are operated on by each thread). The
setup phase, however, is more complicated and has not been
completely threaded. The triple matrix product that forms
the coarse-grid operator is threaded. Only a part of the
interpolation operators is threaded, since the data structure is
not particularly OpenMP friendly. The difficulty is due to the
fact that the matrices are compressed and the total number
of nonzeros for the operators that need to be generated is
not known ahead of time. We currently have no coarsening
routine that uses OpenMP, and therefore used the fastest
coarsening algorithm available, PMIS, to decrease the time
spent in the nonthreaded part of the setup. This algorithm leads
to somewhat increased number of iterations and decreased
scalability compared to other coarsening algorithms [14].

III. TEST PROBLEMS

We use two test problems for our performance study.
The first is a 3D Laplace problem on a box with Dirichlet
boundary conditions with a seven-point stencil generated by
finite differences. We refer to this problem as “Laplace”. The
box consists of N ×N ×αN gridpoints, with α = 1 on Hera
and Intrepid, but α = 0.9 on Jaguar, to allow more optimal
partitioning when using 6 or 12 threads per node. Assuming
mxmymz MPI tasks we partition the domain into subdomains
of size N

mx
× N

my
× αN

mz
. When using the hybrid programming

model the work on these subdomains is then divided among
OpenMP threads.

We designed a second problem to represent a wider range
of applications. This problem is a 3D diffusion problem on a
more complicated grid. The 2D projection of this grid is shown
in Figure 2 (the grid extends equally out of the page in the third
dimension with 4 points). We refer to this problem as “MG”
because of the shape of the grid. This problem has jumps
as well as anisotropies, which appear in many applications.
The finite difference stencils for each of the eight parts of the
grid are given in the figure as well. In particular, part 7 is
anisotropic, and there are jumps between parts 0-3 in the “M”
part of the grid. Each part has 48 grid points. This grid can
then be further refined by refinement factors Rx, Ry , and Rz in
each direction to generate large problems for many processors.
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Fig. 2: The “MG” test problem grid and its associated finite
difference stencils.

For all test runs presented in this paper, we set Rx = 12px,
Ry = 12py , and Rz = 12pz , where pxpypz is the number of
cores per part, and the total number of cores is 8pxpypz .

The grids used to generate these two problems have a
significantly different geometry. While the Laplace grid is
more compact with a (near) optimal surface to volume ratio,
the MG grid (as illustrated in Figure 2) is more drawn out and
hence has a large overall surface. This impacts the number of
processes computing surface elements with fewer numbers of
neighbors. We study these two different problems, since the
shape can have a significant impact on the communication
properties and may also impact scalability.

IV. MULTICORE ARCHITECTURES

We study the performance of AMG on three widely different
architectures: a traditional multi-core, multi-socket cluster
connected by Infiniband (Hera), a Dual-Hex Core Cray XT-5
with a custom 3D torus/mesh network (Jaguar), and a Quad-
core BlueGene/P architecture with a custom 3D torus network
(Intrepid).

A. Quad-Core/Quad-Socket Opteron Cluster (Hera)

Our first test machine is a traditional multi-core/multi-socket
cluster solution at Lawrence Livermore National Laboratory
named Hera. It consists of 864 diskless nodes interconnected
by Quad Datarate (QDR) Infiniband (accessed through a PCIe
card). Each node consists of four sockets, each equipped with
an AMD Quadcore (8356) 2.3 GHz processor. Each core has
its own L1 and L2 cache, but the 2 MB L3 cache is shared
by all four cores located on the same socket. Each processor
provides its own memory controller and is attached to a fourth
of the 32 GB memory per node. Accesses to memory locations
served by the memory controller on the same processor
are satisfied directly, while accesses through other memory
controllers are forwarded through the Hypertransport links
connecting the four processors. Therefore, depending on the
location of the memory, this configuration results in non-
uniform memory access (NUMA) times.

Each node runs CHAOS 4, a high-performance computing,
yet full featured Linux variant based on Redhat Enterprise
Linux. All codes are compiled using Intel’s C and OpenMP/C
compiler (Version 11.1) and use MVAPICH over IB as the
MPI implementation.

B. Dual Hex-Core Cray XT-5 (Jaguar)

Our second test platform is the Cray XT-5 system Jaguar 1

installed at Oak Ridge National Laboratory. It consists of
18,688 nodes organized in 200 cabinets. Each node is equipped
with two sockets holding an AMD Opteron Hex-core processor
each, as well as 16 GB of main memory split between the two
memory controllers of the two sockets, leading to a similar
NUMA architecture as seen on Hera. The nodes of the XT-5
are connected with a custom network based on the SeaStar
2+ router. The network is constructed as 3D torus/mesh with
wrap-around links (torus-like) in two dimensions and without
such links (mesh-like) in the remaining dimension.

All applications on Jaguar use a restricted subset of Linux,
called Compute Node Linux (CNL). While it provides a Linux
like environment, it only offers a limited set of services. On
the upside, it provides a lower noise ratio due to eliminated
background processes. The scheduler on the Cray XT-5 aims at
a compact allocation of the compute processes on the overall
network, but if such a compact partition is not available, it
will also combine distant nodes (w.r.t. network hops) into one
partition.

We used PGI’s C and OpenMP/C compilers (v 9.04) and
experimented with the OpenMP setting -mp=numa to enable
optimizations for NUMA architectures (which mainly consist
of preemptive thread pinning as well as localized memory allo-
cations). Further, we used Cray’s native MPI implementation,
which is optimized for the SeaStar network.

C. Quad-Core Blue Gene/P Solution (Intrepid)

The final target machine is the tightly integrated Intrepid
Blue Gene/P system at Argonne National Laboratory. This
system consists of 40 racks with 1024 compute nodes each
and each node contains a quad-core 850 MHz PowerPC 450
Processor bringing the total number of cores to 163,840.
In contrast to the other two systems, all four cores have a
common and shared access to the complete main memory
of 2 GB. This guarantees a uniform memory access (UMA)
characteristics. All nodes are connected by a 3D torus network
and application partitions are always guaranteed to map to an
electrically isolated proper subset of the nodes organized as a
complete torus with wrap-around in all three dimensions.

On the software side, BG/P systems use a custom compute
node kernel with which all applications must link. This kernel
provides only the most basic support for the application
runtime. In particular, it only supports at most one thread per
core, does not implement preemption support, and does not
enable the execution of concurrent tasks. The latter has the
side effect that executions are virtually noise free. All major
functionality, in particular network access and I/O, is function
shipped, i.e., remotely executed on a set of dedicated I/O
nodes associated with each partition. We compiled all codes
using IBM’s C and OpenMP/C compilers v9.0 and used IBM’s
MPICH2-based MPI implementation for communication.

1Precisely, we are using Jaguar-PF, the newer XT-5 installation at ORNL.



V. PERFORMANCE RESULTS

In this section we present the performance results for
BoomerAMG on the three multicore architectures and discuss
the notable differences in performance. On each machine, we
investigate an MPI-only version of AMG, a version that uses
OpenMP across all cores on a node and MPI for inter-node
communication, as well as intermediate versions that use a
mix of MPI and OpenMP on node. For each experiment, we
utilize all available cores per node on the respective machine.
We look at the AMG setup times and either the AMG solve
time or AMG cycle time (the latter is used for the Laplace
problem, where the number of iterations to convergence varies
across experimental setups from 17 to 44). We use the fol-
lowing notation for our experiments: “MPI” and “Hmxn”.
“MPI” labels indicate timings using an executable that was
compiled using MPI only. All other runs were performed
using an executable compiled with both MPI and OpenMP
and are denoted “Hmxn”, using m MPI tasks per node with
n OpenMP threads per MPI process, i.e., “H2x8” translates to
the use of 2 MPI tasks per node with 8 OpenMP threads each.
In addition, for Hera, which is a NUMA system, we include
an optimized OpenMP version that we developed after careful
analysis of the initial results. This optimized version, labeled
“HmxnMC” in the figures, is described and discussed in
detail in Section VI-C (and is, therefore, not discussed in this
section). For Jaguar, and for Intrepid, we are presenting a few
results using two different partitionings for the MG problem.
The more optimal partitioning is denoted with “Hmxnopt” and
is discussed in more detail in Section VI-A.

A. Hera: AMD Opteron Quad-core

We investigate the performance of AMG-GMRES(10) on
the Laplace and MG problems on the Hera cluster. For the
Laplace problem, we obtained weak scaling results with 100×
100 × 100 grid points per node on up to 729 nodes (11664
cores). We scaled up the problem setting px = py = 2p and
pz = 4p leading to 16p3 cores with p = 1, ..., 9. The AMG-
GMRES(10) setup and cycle times for the Laplace problem
are given in Figures 3a and 3b, respectively. Recall that Hera
has four quad-core processors per node, and we use all 16
cores on each node for all experiments.

We looked at two slightly different variants for the MG
problem: MG-1 and MG-2. For the MG-1 problem, we ran
on up to 512 nodes (8192 cores) with 1,327,104 grid points
per node (82,944 per core), with px = py = 2p and pz = 4p,
for p = 1, 2, 3. AMG-GMRES(10) setup and solve times for
the MG-1 problem are given in Figures 3c and 3d. For the
MG-2 problem, we ran on up to 128 nodes (2048 cores), with
px = py = 4p and pz = 2p, with p = 1, 2. Because the results
for MG-2 are similar to MG-1, we simply list the MG-2 results
in Table I.

First we examine the setup phase for both problems (Fig-
ures 3a and 3c). The eye-catching trend in these figures is the
extremely poor performance for the MPI-only programming
model. The algorithms in the setup phase are complex and
contain a large amount of non-collective communication. With

TABLE I: Timings (in seconds) for the MG-2 Problem on
Hera.

Procs MPI H8x2 H4x4 H2x8 H1x16 H1x16MC
Setup 256 2.3 1.5 1.5 2.2 3.8 3.8

2048 25.1 6.5 2.7 3.0 5.1 5.1
Solve 256 2.0 1.9 1.9 3.7 7.3 2.7

2048 4.2 3.1 2.3 4.3 8.2 3.3

16 MPI tasks per node, the code creates a high aggregated
messaging rate across each node leading to a high pressure
on the Infiniband network card, which further increases with
growing node count. The commodity Infiniband interconnect
is simply not well-suited for this kind of traffic and hence
turns into a bottleneck, causing an overall slowdown.

In the setup phase, H4x4, corresponding to a single MPI
task per socket, initially obtains the best performance since
it maps well to the machine architecture. However, for the
largest node count it is surpassed by H2x8, which can again
be attributed to the network and the higher messaging rate
needed to sustain the larger number of MPI processes and
with that communication partners in the H4x4 configuration
as compared to H2x8.

The solve phase is less complex than the setup and mainly
depends on the MatVec kernel. Its MPI performance (Fig-
ures 3b and 3d) is significantly better, and the OpenMP on-
node version performs worst. This poor performance can be
directly attributed to the underlying machine architecture and
its NUMA properties, and we will discuss this, as well as a
solution to avoid this performance penalty, in more detail in
Secton VI-C.

B. Jaguar: Cray XT5, AMD Opteron hex-core

On Jaguar, we slightly changed the Laplace problem and
the MG problem to enable the use of 6 and 12 threads. For
the Laplace problem we chose Nx = Ny = 100p, Nz = 90p,
px = py = 4p, and pz = 3p, leading to 75,000 grid points per
core. We solved this problem for p = 2, 4, 6, ..., 16. We show
the resulting setup times in Figure 4a and the cycle times in
Figure 4b. For the MG problem, we used px = py = 4p, and
pz = 3p with p = 1, 2, 4, 8. Note that MG consists of 8 parts,
and therefore the total number of cores required is 8pxpypz ,
leading to runs with the same number of cores as the Laplace
problem, but larger numbers of grid points per core.

For the MG problem, we also include timings for runs with
more optimal partitionings for H2x6 and H4x3. H4x3opt is
clearly superior to H4x3, whereas timings for H2x6 are very
similar to those of H2x6opt, with H2x6opt being barely better
for the problems sizes considered here. For more details on
the partitionings, see Section VI-A. For the smaller problem
sizes (384, 3072, and for the MG problem, 24576), the results
are comparable to those on Hera, which is not surprising,
since both machines are NUMA architectures and are based
on a similar multi-socket/multi-core node design. However,
Jaguar features a custom interconnection network designed
for higher messaging rates than the Infiniband interconnect
on Hera, allowing significantly better performance for one
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Fig. 3: Timings on Hera; Hmxn denotes runs performed with m MPI tasks per cluster and n OpenMP threads per MPI task,
HmxnMC denotes runs using the MCSup library; “MPI” denotes runs performed with the MPI-only version using 16 MPI
tasks per node

thread per process cases. The poor performance for H1x12,
exhibited when using 384 cores for the MG-problem, can be
attributed to NUMA effects. For the MG problem and also for
the small Laplace problem runs, the best times are obtained
when assigning 1 or 2 MPI tasks per socket. Generally H2x6
or H2x6opt (analog to H4x4 on Hera) achieve the best timings,
except for the MG setup, where H4x3opt is the fastest. Here,
H4x3opt benefits from an optimal partitioning as well as larger
parallelism in the nonthreaded portions of the setup phase.
For the Laplace problem, the best setup times are achieved
with H1x12 and H2x6, and while H2x6 performs best for the
smaller problem sizes, H1x12 is fastest for the large problem
sizes. For large sizes of the Laplace problem, timings improve
with increasing thread sizes.

C. Intrepid: IBM BG/P Quad-core
Blue Gene/P systems like Intrepid provide only a restricted

operating system environment with a static task distribution.
Codes can be run in one of three modes, Symmetric Multi-
Processing (SMP), Dual (DUAL), and Virtual Node (VN), and
the mode determines the number of possible MPI tasks and
threads. In SMP mode, we execute a single MPI process and
use four threads per node (labeled “H1x4”); in DUAL mode
we use two MPI processes with two threads each (“H2x2”);

and in VN mode, we use four MPI tasks per node with a
single thread each. For the latter configuration we run with
two binaries, an MPI-only code compiled without OpenMP
(“MPI”) and the OpenMP code executed with a single thread
(labeled “H4x1”).

We scaled up the Laplace problem on Intrepid with 250,000
grid points per node on up to 32,000 nodes (128,000 cores)
setting px = py = 2p and pz = 4p, as on Hera, leading
to 16p3 cores with p = 2, 4, 8, 12, 16, 20. The results for the
AMG-GMRES(10) setup and cycle time (Figures 5a and 5b,
respectively) show that the MPI-only model is generally the
best-performing for the setup phase, although the solve cycle
times are quite similar. This result is in stark contrast to the
experiments on Hera, where the MPI-only model shows a
significantly higher overhead. This is caused by the custom
network on the BG/P system, which is designed to allow
higher messaging rates.

Overall, we see a good weak scaling behavior; only the
times on 27,648 and 128,000 cores using 1 thread per MPI
task are slightly elevated due to the less optimal processor
geometries compared to the 65,538 and 8192 core runs, which
are both powers of two. We do see more variation in the
results in the setup phase than in the solve phase, and the
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(c) Setup times for AMG-GMRES(10) on the MG problem.
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(d) Solve times for AMG-GMRES(10) on the MG problem.

Fig. 4: Timings on Jaguar: Hmxn denotes runs performed with m MPI tasks per cluster and n OpenMP threads per MPI task,
Hmxnopt denotes runs with optimal partitionings, “MPI” denotes runs performed with the MPI-only version using 12 MPI
tasks per node.

“H1x4” case is the clearly worst performing, while the “H2x2”
and “MPI” experiments are quite similar. The “H2x2” case
partition has the advantage of each MPI task subdomain being
a perfect cube. The slower “H1x4” performance in the setup
is likely due to the fact that the percentage of time spent
in the nonthreaded portion of the setup phase increases with
increasing number of threads as well as due to overhead
associated with threading.

Now we take a closer look at the scaling results for the
two variants of the MG problem. For the MG-1 problem, we
ran on up to 16,384 nodes (65,536 cores) with 331,776 grid
points per node (82,944 per core), setting px = py = 2p and
pz = 4p, with p = 1, 2, 4, 8, as on Hera, and results for the
setup and solve phase are given in Figures 5c and 5d. For
the MG-2 problem, we ran on up to 32,768 nodes (131,072
cores) with 331,776 grid points per node, with px = py = 4p,
pz = 2p, and p = 1, 2, 4, 8, and results for the setup and solve
phase are given in Figures 5e and 5f.

We see that the MPI-only model is the best-performing.
Again, the differences in the solve phase are less pronounced
than in the more-complex setup phase. Notice that for the MG-

1 problem, the setup is considerably more expensive for the
“H1x4” case. Using a better partitioning for the “H1x4opt”
case we were able to get runtimes comparable to the “H2x2”
mode. We will further discuss the importance of the choice of
partitioning in Section VI-A. “H2x2” is also more expensive
than “MPI” in the setup, unlike for the Laplace problem,
where the “H2x2” case has a more favorable partitioning.
On Intrepid, the fact that the setup phase is not completely
threaded becomes very obvious, and we will discuss this
further in Section VI-E.

VI. LESSONS LEARNED

The measurements presented in the previous section reflect
the performance of a production quality MPI code with
carefully added OpenMP pragmas. It hence represents a typ-
ical scenario in which many application programmers find
themselves when dealing with hybrid codes. The partly poor
performance shows how difficult it is to deal with hybrid
codes on multicore platforms, but it also allows us to illustrate
lessons we learned, which help in optimizing the performance
of AMG as well as other codes.



A. Effect of Ghostlayer Sizes

As mentioned in Section II, the manner in which a problem
is partitioned among tasks and threads has an effect on the
number of ghostlayer points. Here we evaluate the number of
ghostlayer points for each MPI task for both test problems
and then analyze the effect of using threading within MPI
tasks. We consider only ghostlayer points in the first layer,
i.e., immediate neighbor points of a point i that are located on
a neighbor processor. Note that this analysis only applies to
the first AMG level, since the matrices on coarser levels will
have larger stencils, but fewer points within each MPI task.
However, since we aggressively coarsen the first grid, leading
to significantly smaller coarse grids, the evaluation of the finest
level generally requires the largest amount of computation and
should take more than half of the time. (Note that this is the
case on Intrepid, but not on Hera where network contention
leads to large times on the coarse levels.) Also, choosing a
nonoptimal partitioning for the MPI tasks will generally lead
to nonoptimal partitionings on the lower levels.

Let us first consider the Laplace problem. Recall that there
are pxpypz cores and a grid of size N ×N × αN . There are
mxmymz MPI tasks. Since we want to also consider OpenMP
threads, we introduce parameters sk, with sk = pk

mk
. Now the

number of threads per MPI task is s = sxsysz .
We can define the total number of ghostlayer points for the

Laplace problem by adding the surfaces of all subdomains
minus the surface of the whole grid:

νL(s) = 2(
pz

sz
+ α

py

sy
+ α

px

sx
− 1− 2α)N2. (1)

On Intrepid, α = 1, and px = py = 2p, and pz = 4p. We are
interested in the effect of threading on the ghostlayer points
for large runs, since future architectures will have millions or
even billions of cores. In particular, if p becomes large, and
with it N , the surface of the domain becomes negligible, and
we get the following result that we refer to as the “ghostlayer
ratio”:

ρL(s) = lim
p→∞

νL(1)
νL(s)

= 4/(
2
sz

+
1
sy

+
1
sx

). (2)

On Jaguar, we chose somewhat different sizes so that the
numbers can be divided by 6 and 12. Here, Nx = Ny = N ,
Nz = 0.9N , px = py = 4p, and pz = 3p. Inserting these
numbers into Equation 1, one obtains the following ratio for
Jaguar

ρJ
L(s) = 17/(

5
sz

+
6
sy

+
6
sx

). (3)

The MG problem is generated starting with the grid given in
Figure 2, and its uniform extension into the third dimension.
Recall that it consists of eight parts with ni

x ×ni
y ×nz points

each, i = 0, ..., 7, with nz = 4 and the ni
x and ni

y as shown
in Figure 2. It then is further refined using the refinement
factors Rx = 12px, Ry = 12py and Rz = 12pz , requiring
8pxpypz cores. The total number of ghostlayer points for the

TABLE II: Ghostlayer ratios on Hera and Intrepid ( up to 4
threads) for thread choices (sx, sy, sz)

Laplace MG-1 MG-1-opt MG-2
1.33 (1,1,2) 1.17 (1,1,2) 1.17 (1,2,1)
1.60 (1,1,4) 1.28 (1,1,4) 1.54 (1,2,2) 1.54 (1,2,2)
2.00 (1,2,4) 1.73 (1,2,4) 1.82 (1,4,2)
2.67 (2,2,4) 2.34 (2,2,4) 2.52 (2,4,2)

TABLE III: Ghostlayer ratios on Jaguar for thread choices
(sx, sy, sz)

Laplace MG-J MG-J-opt
1.38 (1,2,1.5) 1.24 (1,1,3) 1.43 (1,2,1.5)
1.82 (2,2,1.5) 1.66 (1,2,3) 1.82 (2,2,1.5)
2.22 (2,2,3 ) 2.21 (2,2,3)

MG problem is given by

νMG(s) = 1152[24(
pz

sz
− 1)pxpy + (34

py

sy
− 30)pxpz

+(25
px

sx
− 8)pypz].

We can now compute the ratios of all three versions of the
MG-problem:

ρMG−1(s) = ρMG−2(s) = ρMG−J(s) =
83

24
sz

+ 34
sy

+ 25
sx

.

(4)
In Tables II and III we list ratios we get for the choices

of sx, sy and sz , that we used in our experiments, as well as
(sx, sy, sz). Note that when using the same number of threads,
a larger ratio is clearly correlated to better performance as is
obvious when comparing e.g. the performance of MG-1 with
that of MG-1-opt in Figure 5c. Hence, it is necessary to choose
an appropriate partitioning for each number of threads that
optimizes this ghostlayer ratio. However, optimizing this ratio
alone is not sufficient to achieve the best performance since
other architectural properties, such as socket distributions and
NUMA properties, have to be taken into account as well.

B. Network Performance vs. On-node Performance

AMG, as with many of its related solvers in the hypre suite
[17], is known to create a large amount of small messages.
While messages are combined such that a processor contacts
each neighbor processor a single time per solve level, the large
number of small messages is due to the increased stencil size
(and therefore increased number of communication pairs) on
the coarser grid levels as discussed in Section II. Consequently,
AMG requires a network capable of sustaining a high messag-
ing rate. This situation is worsened by running multiple MPI
processes on a single multi-socket and/or multicore node, since
these processes have to share network access, often through a
single network interface adapter.

We clearly see this effect on Hera, which provides both
the largest core count per node and the weakest network:
on this platform the MPI-only version shows severe scaling



limitations. Threading can help against this effect since it
naturally combines the message sent from multiple processes
into a single process. Consequently, the H4x4 and H2x8
versions on this platform provide better performance than the
pure MPI version.

On the other two platforms, the smaller per node core
count and the significantly stronger networks that are capable
of supporting larger messaging rates, allow us to efficiently
run the MPI-only version at larger node counts. However,
following the expectations for future architectures, this is a
trend that we are likely unable to sustain: the number of cores
will likely grow faster than the capabilities of the network
interfaces. Eventually a pure MPI model, in particular for
message bound codes like AMG, will no longer be sustainable,
making threaded codes a necessity.

C. Correct Memory Associations and Locality

In our initial experiments on the multicore/multi-socket
cluster Hera we saw a large discrepancy in performance
between running the same number of cores using only MPI
and running with a hybrid OpenMP/MPI version with one
process per node. This behavior can be directly attributed to
the NUMA nature of the memory system on each node: in the
MPI-only case, the OS automatically distributes the 16 MPI
tasks per node to the 16 cores. Combined with Linux’s default
policy to satisfy all memory allocation requests in the memory
that is local to the requesting core, all memory accesses are
executed locally and without any NUMA latency penalties. In
the OpenMP case, however, the master thread allocates the
memory that is then shared among the threads. This leads
to all memory being allocated on a single memory bank, the
one associated with the master thread, and hence to remote
memory access penalties as well as contention in the memory
controller responsible for the allocations.

To fix this, we must either allocate all memory locally in the
thread that is using it, which is infeasible since it requires a
complete rewrite of most of the code to split any memory
allocation to per thread allocations, or we must overwrite
the default memory allocation policy and force a distribution
of memory across all memory banks. The latter, however,
requires an understanding of which memory is used by which
thread and a custom memory allocator that distributes the
memory based on this information.

For this purpose, we developed a multicore support library,
called MCSup, which provides a set of new NUMA-aware
memory allocation routines to allow programmers to explicitly
specify which threads use particular regions of the requested
memory allocation. Each of these routines provides the pro-
grammer with a different pattern of how the memory will be
used by threads in subsequent parallel regions. Most dominant
in AMG is a blocked distribution, in which each thread is
associated with a contiguous chunk of memory of equal size.
Consequently, MCSup creates a single contiguous memory
region for each memory allocation request and then places
the pages according to the described access pattern.

MCSup first detects the structure of the node on which it
is executing. Specifically, it determines the number of sockets
and cores as well as their mapping to OpenMP threads, and it
then uses this information, combined with the programmer
specified patterns, to correctly allocate the new memory.
MCSup itself is implemented as a library that must be linked
with the application. It uses Linux’s numalib to get low
level access to page and thread placement; the programmer
has only to replace the memory allocations intended for cross
thread usage with the appropriate MCSup routines.

The figures in Section V-A show the results obtained when
using MCSup (labeled “MC”): with MCSup, the performance
of OpenMP in the solve phase is substantially improved. We
note that in the setup phase the addition of MCSup had little
affect on the OpenMP performance because the setup phase
algorithms are such that we are able to allocate the primary
work arrays within the threads that use them (as opposed to
allocation by the master thread as is required in the solve
phase). Overall, though, we see that the performance with
MCSup now rivals the performance of MPI-only codes.

We see a similar trend on Jaguar: with its dual socket node
architecture, it exhibits similar NUMA properties as Hera for
runs with 12 threads per core. However, compared to Hera the
effect is smaller since each node only has two cores instead
of four. This decreases the ratio of remote to total memory
accesses and reduces the number of hops remote loads have
to take on average. In some cases, like the cycle times for
the Laplace problem when run on more than 24K cores, the
performance of the 12 thread case is even better than other
configurations despite the impact of the NUMA architecture.
At these larger scales the smaller number of MPI processes
per node, and with that the smaller number of nodes this node
exchanges messages with, reduces the pressure onto the NIC to
a point where the NUMA performance penalty is less than the
penalty caused by the contention for the NIC with four or more
MPI processes per node. Applying similar techniques as the
ones used in MCSup could theoretically improve performance
further, but such implementations would have to get around
the limitations of the restricted compute node kernels run on
the Cray XT backend nodes.

In the future, it is expected that programming models like
OpenMP will include features similar to those of MCSup.
In particular for OpenMP, such extensions are already being
discussed in the standardization process for the next major
version of the standard. While this makes external layers like
MCSup unnecessary, the main lesson remains: the programmer
needs to explicitly describe the association between threads
and the memory on which they work. Only with such a
specification of memory affinity is it possible to optimize the
memory layout and to adjust it to the underlying architecture.

D. Per Socket Thread and Process Pinning

The correct association of memory and threads ensures
locality and the avoidance of NUMA effects only so long as
this association does not change throughout the runtime of the
program. None of our two NUMA platforms actively migrates



TABLE IV: Timings (in seconds) for the MG-1 Problem with
10,616,832 grid points on Intrepid on 32 nodes.

Programming 128 MPI 64 MPI 32 MPI
model tasks tasks tasks

Setup MPI-only 2.0 4.3 11.6
MPI-OMP 2.5 4.0 7.1
Speedup 0.80 1.08 1.63

Solve MPI-only 3.8 7.4 14.7
MPI-OMP 3.8 4.1 4.3
Speedup 1.00 1.80 3.42

memory pages between sockets, but on the Hera system with
its full featured Linux operating system, thread and processes
can be scheduled across the entire multi-socket node, which
can destroy the carefully constructed memory locality.

It is therefore necessary to pin threads and processes to
the appropriate cores and sockets so that the memory/thread
association determined by MCSup is maintained throughout
the program execution. Note that MCSup’s special memory
allocations are only required when the threads of a single MPI
process span multiple sockets; otherwise, pinning the threads
of an MPI process to a socket is sufficient to guarantee locality,
which we clearly see in the good performance of the H4x4
case on Hera.

E. Performance Impact of OpenMP Constructs

As we mentioned earlier, while the solve phase is com-
pletely threaded, some components of the setup phase do
not contain any OpenMP statements, leading to a decrease
in parallelism when using more than one thread per MPI
task. Therefore, one would expect the overall performance of
the setup time to deteriorate, particularly when increasing the
number of OpenMP threads and thus decreasing number of
MPI tasks. Interestingly, this appears not to be the case on
Hera and Jaguar. On Hera, network contention caused by
large numbers of MPI tasks appears to overpower any potential
performance gain through increased parallelism. On Jaguar
it appears that using the correct configuration to match the
architecture, i.e., using one or two MPI tasks per socket and
6 or 3 threads per MPI task, is more important. However, the
decreased parallelism becomes very obvious on Intrepid. To
get a better idea of the effect of the lack of OpenMP threads
in some components of the setup phase, we listed timings for
both phases of the MG-1 problem run on 32 nodes in Table IV.
The ’MPI-only’ line lists the times for solving MG-1 in MPI-
only mode using 128, 64 and 32 cores. The ’MPI-OMP’ line
beneath lists the times for solving the same problem with 128,
64 and 32 MPI tasks and 1,2, and 4 threads, respectively, such
that all 128 cores are utilized. We also list the speedup that is
obtained by using OpenMP vs. no OpenMP.

One can clearly see the time improvement achieved by
using two or four threads within each MPI task for the solve
phase. However, as expected, the speedups for the setup phase
portions are very small due to the nonthreaded portions of
code. Also note that the use of OpenMP with one thread
shows a 25% overhead in the more complex setup phase,
whereas the solve phase performance is similar. Since the

Region 3 Time (s) Rel. time Loads Branches
No OMP 20.09s 100% 100% 100%
OMP for loop 29.33s 146% 138% 150%
OMP for no priv. 29.35s 146% 137% 148%
OMP par. region 29.54s 147% 146% 152%
OMP reg. no priv. 23.32 116% 107% 103%

Region 4 Time (s) Rel. time Loads Branches
No OMP 42.60s 100% 100% 100%
OMP for loop 52.29s 123% 119% 132%
OMP for no priv. 52.41s 123% 119% 133%
OMP par. region 55.80s 131% 121% —
OMP reg. no priv. 46.92 110% 98% 98%

TABLE V: Cumulative timings and hardware
counter data for two OpenMP regions in
hypre_BoomerAMGBuildCoarseOperator comparing
code versions without OpenMP (baseline) to using an
OpenMP for loop and an OpenMP parallel region each with
and without private variables (128 MPI tasks, 1 thread per
task, BG/P, problem MG-1)

thread configuration is the same for those two versions, this
overhead must stem from the OpenMP runtime system.

We traced the overhead back to a single routine in the setup
phase — hypre_BoomerAMGBuildCoarseOperator.
This routine computes a triple matrix product, and it contains
four OpenMP for regions, each looping over the number of
threads, with regions three and four dominating the execution
time. The timings for those regions along with the number of
data loads and branch instructions are shown in Table V.

The code of this function describes the (complex) setup of
the matrix. It was manually threaded and uses a for loop to
actually dispatch this explicit parallelism. However, we can
replace the more common for loop with an explicit OpenMP
parallel region, which implicitly executes the following block
once on each available thread. While the semantics of these
two constructs in this case is equivalent, the use of a parallel
region slightly slows the execution, in particular in region 4.

Further, we find that both regions use a large number
of private variables. While these are necessary for correct
execution in the threaded case, we can omit them in the single
thread case. This change has no impact on the code using
an OpenMP for loop, but when removing private variables
from the OpenMP parallel regions, the performance improves
drastically from 47% to 16% overhead for region 3 and 31%
to 10% for region 4.

We can see these performance trends also in the correspond-
ing hardware performance counter data, also listed in Table V,
in particular the number of loads and the number of branches
executed during the execution of these two regions. This is
likely attributable to the outlining procedure and the associated
changes in the code needed to privatize a large number of
variables, as well as additional book keeping requirements.

Based on these findings we are considering rewriting the
code to reduce the number of private variables, so that this
performance improvement will translate to the threaded case.



VII. CONCLUSIONS

This paper presents a comprehensive study of a state-of-
the-art Algebraic Multigrid (AMG) solver on three large scale
multi-core/multi-socket architectures. These systems already
cover a large part of the HPC space and will dominate the
landscape in the future. Good and (even more important)
portable performance for key libraries, like AMG, on such
systems will therefore be essential for their successful use.
However, our study shows that we are still far from this goal,
in particular with respect to performance portability.

The discussion in the previous section illustrates the many
pitfalls that await developers of hybrid OpenMP/MPI codes.
In order to achieve at least close to optimal performance,
particularly on NUMA systems, it is essential not only to
guarantee memory locality, but also to optimize domain par-
titioning for each thread count. Further, in order to maintain
this locality, it is advisable to turn off any thread or process
migration across sockets; threads of an MPI process should
always be kept on the same socket to achieve both memory
locality and to minimize OS overhead. Further, as the example
in Section VI-E shows, it is imperative to select the correct
OpenMP primitive for a particular task, especially if multiple,
equivalent pragmas are available. Finally, it is important to
reduce the number of private variables, since they can incur
additional bookkeeping overhead.

Overall, our results show that the performance and scalabil-
ity of AMG on the three multicore architectures is varied, and
a general solution for obtaining good multicore performance
is not possible without considering the specific target architec-
ture including node architecture, interconnect, and operating
system capabilities. In many cases it is left to the programmer
to find the right techniques to extract the optimal performance
and the choice of techniques is not always straightforward.
With the right settings, however, we can achieve a performance
for hybrid OpenMP/MPI solutions that is at least equivalent
to the existing MPI model, but with the promise of scalability
to concurrency levels that would not be possible for MPI-only
applications.
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(a) Setup times for AMG-GMRES(10) on the Laplace problem.
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(b) Cycle times for AMG-GMRES(10) on the Laplace problem.
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(c) Setup times for AMG-GMRES(10) on the MG-1 problem.

0

1

2

3

4

5

6

7

0 10000 20000 30000 40000 50000 60000

Se
co

n
d

s

No of cores

MPI

H2x2

H1x4

H4x1

H1x4opt

(d) Solve times for AMG-GMRES(10) on the MG-1 problem.
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(e) Setup times for AMG-GMRES(10) on the MG-2 problem.
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(f) Solve times for AMG-GMRES(10) on the MG-2 problem.

Fig. 5: Timings on Intrepid; Hmxn denotes runs performed with m MPI tasks per cluster and n OpenMP threads per MPI
task, Hmxnopt denotes runs with optimal partitionings, “MPI” denotes runs performed with the MPI-only version using 4 MPI
tasks per node


